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1. Introduction

Much of the work we did early in the semester was concerned with proving the existence of
meromorphic functions on a given Riemann surface. One important consequence of this work is the
following result: given a compact Riemann surface X of genus g and a point p ∈ X, there exists
a nonconstant meromorphic function f : X → CP1 with pole of order at most g + 1 at p. This
theorem allows us to associate to each compact connected Riemann surface Σ a piece of algebraic
data, namely the field of meromorphic functions on Σ, which we denote using kΣ. In fact, this
association can be strengthened into an equivalence of categories, which we make precise in the
following.

Theorem 1.1 (The Main Theorem). Let C denote the category whose objects are compact connected
Riemann surfaces and whose morphisms are holomorphic maps, and let D denote the category of
finite algebraic field extensions of C(z) with field inclusions as its morphisms. Then C and D are
(dually) equivalent categories.

While not immediately obvious, there are several advantages to this more categorical approach.
Of interest, in particular, are the several algebraic and number-theoretic consequences of this theo-
rem, one of which we state (and prove) immediately.

Theorem 1.2 (Lüroth’s Theorem). Let K be a field such that C ⊂ K ⊂ C(z), and assume K ̸= C.
Then K and C(z) are isomorphic.

To prove Theorem 1.2, we’ll need the following result, which we proved in Problem Set 3.

Lemma 1.3. Let X and Y be compact connected Riemann surfaces, and let f : X → Y be a
holomorphic map of degree d. Then kY includes into kX by precomposing with f , and kX is an
algebraic extension of kY of degree d.

Proof of Lüroth’s Theorem. Begin by recalling that C(z) is the field of meromorphic functions on
CP1. Note that the assumption K ̸= C and the fact that C is algebraically closed together imply
that K has nonzero transcendence degree as a field extension of C. The inclusion K ⊂ C(z) tells
us that trdegC(K) = 1. Thus, we may apply Theorem 1.1 to K ⊂ C(z); it follows that there is a
holomorphic map f : CP1 → ΣK , where ΣK is the compact connected Riemann surface associated to
the field K. Now, the existence of a nonconstant meromorphic function on ΣK yields a holomorphic
h : CP1 → CP1 given by postcomposing this meromorphic function with f . By Lemma 1.3, the
degree of h is the degree of the resulting field extension, i.e., deg(h) = [C(z) : C(z)] = 1. Now,
deg(h) = 1 forces deg(f) = 1, since h is given by precomposing the meromorphic function on ΣK

with f . It follows that f is a biholomorphism, and therefore Theorem 1.1 forces K ∼= C(z). □

Theorem 1.2 is just one of the many applications of Theorem 1.1, the rest of which are discussed
in Section 3. Section 2 is dedicated to illustrating Theorem 1.1.1 Henceforth, when we refer to
fields, we mean field extensions of C of transcendence degree 1, unless specified otherwise. Since our
discussion of Riemann surfaces is solely concerned with those that are both compact and connected,
implicitly assume that such adjectives accompany the phrase “Riemann surface” from here on out.
What follows is essentially an amalgamation of parts of Chapters 4 and 11 of [1].

1Despite my best attempts, I was unable to come up with or find a sufficiently rigorous proof of Theorem 1.1 without
referring to more high-powered tools from algebraic geometry. While I will describe a general procedure for proving
Theorem 1.1, this will be at best a sketch of the proof.
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2. The Main Theorem

2.1. Illustrating the Theorem. As mentioned in Section 1, to each Riemann surface Σ we may
associate its field of meromorphic functions kΣ. Moreover, given a holomorphic map f : Σ1 → Σ2,
we get a map of of fields kΣ2 → kΣ1 (which, recall, is necessarily an inclusion) given by pulling
a meromorphic function on Σ2 back to a meromorphic function on Σ1 by precomposing with f .
Denote this map of fields by f∗.

For the other direction, given a field K, we would like to associate a Riemann surface X to K
such that the field of meromorphic functions on X is isomorphic to K.

Theorem 2.1. Let K be any finite extension of C(z). Then there is a compact, connected Riemann
surface Σ such that kΣ = K. In particular, the data of a field extension K/C(z) gives us a Riemann
surface Σ and a holomorphic f : Σ → CP1.

Proof. Begin by noting that because K is a finite extension of C(z), we may write K as

C(z)[w]/(P ),

where P is some irreducible polynomial in w with coefficients in C(z). We claim that, without
loss of generality, we may assume P ∈ C[z, w]. Clearing denominators, we get cP ∈ C[z, w] for
some c ∈ C[z], and we may assume that the coefficients in cP do not share a common factor (i.e.,
cP is primitive). Since P is irreducible in C(z)[w], cP remains irreducible in C(z)[w], since we
are multiplying by a unit. Moreover, cP is primitive in C[z][w], implying that cP is irreducible in
C[z][w] by Gauss’ Lemma. Thus, assume P ∈ C[z, w]. Since P is irreducible, the ideal it generates
in C[z, w] is prime, and we have that C[z, w]/(P ) is an integral domain. We see that K must be the
field of fractions of C[z, w]/(P ); one way to see this is by recalling the fact that localization respects
quotients.

Now, let P1 and P2 be relatively prime polynomials in C[z, w]. When viewed as elements of
C(z)[w], both polynomials must still be coprime by Gauss’ Lemma, implying that we may write
λP1 + µP2 = 1 for λ, µ ∈ C(z)[w]. Clear denominators to give ρ(z) = λ̃P1 + µ̃P2 for some 0 ̸= ρ ∈
C[z]. It is not hard to see that the set of all ρ which can be expressed in this way forms an ideal of
C[z]: if ρ1, ρ2 are in this set, then we can write

ρ1(z) + ρ2(z) = (λ̃1 + λ̃2)P1 + (µ̃1 + µ̃2)P2,

and
q(z)ρ(z) = qλ̃P1 + qµ̃P2

for all q ∈ C[z]. Therefore, because C[z] is a principal ideal domain, the ideal in question is generated
by some (monic) element ρ0(z) we call the resultant of P1 and P2 (requiring the resultant to be
monic eliminates any sort of ambiguity about which generator to pick).

By definition, we see that the projection of the zero locus of P1(z, w) and P2(z, w) to the z-
coordinate is contained in the vanishing set of ρ0(z). In other words, if (a, b) is a common root
of P1 and P2, then a is a root of ρ0. There are only finitely many possibilities for a; a symmetry
argument implies that there are only finitely many possibilities for b. Therefore, P1 and P2 have
only finitely many common roots.

Now, recall that we have some irreducible polynomial P ∈ C[z, w]. Let X ⊂ C2 denote its
zero locus, and let S denote the set of singular points in X—the points in X where both of the
partials Pz and Pw vanish. Applying the above result to P and Pw tells us that S must be finite.
We’ve seen before that a smooth, complex algebraic curve is a Riemann surface, so X \ S is indeed
a Riemann surface (we’re throwing out the singular points). Let π : X → C denote projection onto
the z-coordinate. View P as a polynomial in w with coefficients in C[z], and let F be the finite set of
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roots of the leading coefficient of P regarded as a polynomial in w. Define S+ = π−1(π(S)∪F ) ⊂ X.
It is not hard to see that S+ is itself finite: If (z0, w0) ∈ S+, then z0 = π(z0, w0) ∈ π(S)∪F (which
is a finite set). We also know P (z0, w0) = 0, implying that for each z0 there are only finitely many
possible w0 such that (z0, w0) ∈ S+, unless P (z0, w) is identically 0. This would force (z − z0)|P ,
contradicting irreducibility (ignore the trivial case where P = z − z0).

Letting E = π(S)∪F ∪{∞}, viewed as a subset of CP1, we see that π is a proper holomorphic
map

π : X \ S+ → CP1 \ E.

Let ∆ denote the set of critical values of π. The proper branched covering π gives a monodromy
ρ : π1(CP1 \ (E ∪∆)) → Sd from which we can recover X \ S+ by Riemann’s Existence Theorem.
Recall from early in the semester that this data also gives us a compact Riemann surface X∗

containing X \ S+ as a dense open subset along with a holomorphic map from X∗ to CP1 given by
“putting back the punctures” S+.

Thus, to each irreducible polynomial P , we may associate a compact Riemann surface Σ = X∗

equipped with a holomorphic map to CP1 with degree degw(P ). It remains to show that Σ is
connected. To do so, we will show that Z(P ) ⊂ C2 is connected. Suppose for a contradiction
that Z(P ) has two components, so that Σ is a disjoint union of compact Riemann surfaces Σ1 and
Σ2. By considering kΣi , we see that Σi can be associated to a polynomial Qi ∈ C(z)[w] as the
compactification of its vanishing locus. However, this implies that Σ is associated to the polynomial
Q1Q2, which forces P = Q1Q2, contradicting the irreducibility of P . In particular, we have P is
reducible in C(z)[w]; Gauss’ Lemma will tell us that P is reducible in C[z, w]. Hence, Σ is connected.

Finally, we claim that kΣ = K. Because Σ comes equipped with a degree d holomorphic map
f : Σ → CP1, we see that [kΣ : CP1] = d by Lemma 1.3. But we also have a natural inclusion
K ⊂ kΣ, implying that d = [kΣ : CP1] = [kΣ : K][K : CP1]. Since K is a degree-d extension of
C(z), it follows that [kΣ : K] = 1, forcing the equality kΣ = K. □

2.2. An Outline of the Proof. In this section, rather than focusing on proofs, we instead give a
sketch of the steps needed to prove Theorem 1.1. Let’s begin by setting things up more categorically:
we have a contravariant functor Φ : C → D taking Σ 7→ kΣ and f to the aforementioned map of
fields f∗. Checking that Φ is indeed a contravariant functor is straightforward.

Now, we need to define a functor Ψ : D → C such that Ψ◦Φ and Φ◦Ψ are naturally isomorphic
to idC and idD, respectively. Theorem 2.1 tells us how to associate to each field a Riemann surface Σ
and a holomorphic map Σ → CP1. However, there are several drawbacks to this approach, especially
from a categorical perspective:

(1) Our construction of Σ from K is ad hoc and noncanonical.

(2) This construction also obscures what Σ really is as a Riemann surface. We see that it is the
compactification of some algebraic curve in C2, however this construction can be difficult to
work with (especially near the singular points).

(3) Given an inclusion of fields L ⊂ K, let ΣL and ΣK denote the associated Riemann surfaces
given by Theorem 2.1. It is not at all obvious from the approach taken in Theorem 2.1 that
there should be a canonical holomorphic map from ΣK → ΣL.

Hence, the following definition comes into play:

Definition 2.2. Let K be any field. A valuation on K is a surjective map ν : K → R ∪ {∞} with
the following significance:
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(1) ν−1(∞) = {0};

(2) ν(a+ b) ≥ min(ν(a), ν(b)) for all a, b ∈ K;

(3) ν(ab) = ν(a) + ν(b) for all a, b ∈ K.2

We say that two valuations ν1 and ν2 are equivalent if ν1 = cν2 for some c ∈ R+ (also note that
cν is a valuation). A valuation is said to be trivial if it takes all nonzero elements of K to 0. If K
is a subfield of some larger field L, then clearly any valuation on L restricts to one on K. If the
restriction of such a valuation ν to K is trivial, we say that v is a valuation of L over K.

Given some valuation ν, let Rν be the subset of K consisting of those elements with nonnegative
valuations; let Iν ⊂ Rν be those elements with strictly positive valuations. In fact, Rν is a ring; we
call it the valuation ring. It is not hard to see that Iν is a maximal ideal in Rν , so Rν/Iν is a field,
which we call the residue class field of ν.3

Let K be any field in D. Let Val(K) denote the set of equivalence classes of valuations on K over
C. We endow Val(K) with a Riemann surface structure; with this structure Val(K) is an example
of a Zariski-Riemann space.4 Despite the abstractness of this approach, we will see immediately
that it is preferable to the one taken in Theorem 2.1. In particular, if L ⊂ K there is a natural
map from Val(K) → Val(L) given by considering the restriction of a valuation on K to a valuation
on L. Moreover, if we start with a Riemann surface Σ, there is a bijective correspondence between
the points of Σ and valuations in Val(kΣ). The Riemann surface structure we give to Val(K) will
guarantee that all of these maps are holomorphic (in particular the map between Σ and Val(kΣ) is
a holomorphic isomorphism).

Therefore, we can let Ψ : D → C be the functor taking a field K to the Riemann surface
Val(K) and a morphism of fields L ↪→ K to a holomorphic map between the Riemann surfaces
Val(K) → Val(L) given by restriction. We see that

Ψ(Φ(Σ)) = Ψ(kΣ) = Val(kΣ) ∼= Σ

and that
Φ(Ψ(K)) = Φ(Val(K)) = kVal(K).

Now, it is not difficult to check that, for any field K and ν ∈ Val(K), the residue class field Rν/Iν
is isomorphic to C. This allows us to, for each f ∈ K, define a map ef : Val(K) → CP1 given by

ef (ν) =

{
∞ if ν(f) < 0;

the value of [f ] ∈ Rν/Iν ∼= C otherwise.

Each of these maps will be holomorphic (in fact, the Riemann surface structure on Val(K) will be
characterized by this property), implying that there is an inclusion of fields K ⊂ kVal(K). Finally, if
K is a degree-d field extension of C(z), we will also need to prove the existence of a degree d branched
cover Val(K) → CP1. This will tell us that [kVal(K) : CP1] = d, and the inclusion K ⊂ kVal(K) (given

2This definition can be generalized by replacing R ∪ {∞} by any totally ordered group G with ∞ adjoined.
3Suppose J is some ideal of Rv strictly containing Iν . Then there is an element a ∈ J such that ν(a) = 0. It follows
that ν(a−1) = 0, so a−1 ∈ Rν . Therefore, 1 = a−1a ∈ J .
4This is really a special case of a more general construction, in which the set of valuation subrings of a field extension
F/k is endowed with the Zariski topology ; the resulting space is called the Zariski-Riemann space of F/k. One can
prove that Zariski-Riemann spaces are locally ringed spaces, and in the special case where F is the field of rational
functions of a curve over an algebraically closed field k, we see that the corresponding Zariski-Riemann space is
actually a scheme. However, we will avoid taking such an algebro-geometric approach in this paper; one can read
more in [3]. Finally, valuation subrings have an explicit algebraic definition, but each valuation ring arises from a
valuation on F . While we could avoid talking about valuations whatsoever, valuations allow us to associate arithmetic
data to points, ideals, rings, etc., and therefore make the number-theoretic consequences more immediately apparent.
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by the ef ’s) then forces K = kVal(K) (K is a degree d extension of C(z)). Therefore, Φ ◦ Ψ and
Ψ ◦ Φ are both naturally isomorphic to the identity, implying the desired equivalence of categories
between C and D.

It remains to discuss how Val(K) is even topologized, let alone given a Riemann surface struc-
ture. To see how this is done, recall the maps ef : Val(K) → CP1 defined above. Endow Val(K)
with the coarsest topology such that this collection of maps is continuous. In other words, for each
open U ⊂ CP1, declare e−1

f (U) to be open for all f , and let the topology on Val(K) be the coarsest
topology such that this is true. Now, in order to make Val(K) into a Riemann surface, we need
to provide it with an atlas of holomorphic charts. Again, we can use our maps ef to do this. We
have such an atlas on CP1, and we can pull back a chart (U,φ) in this atlas to an open set e−1

f (U)

of Val(K). Then, by restricting to some small-enough open subset of e−1
f (U), we get a chart on

Val(K). These charts will all be compatible—the transition maps are inherited from CP1 and are
therefore surely holomorphic—, so we have an atlas of holomorphic charts, as desired.

Finally, we describe the aforementioned bijection between a Riemann surface Σ and Val(Σ) :=
Val(kΣ). To each point p ∈ Σ, associate the valuation νp given by νp(f) = ordp(f), the order of
vanishing of f ∈ kΣ at p. In other words, in a local chart of p, we write f as a Laurent series
centered at z(p) = 0. Then νp(f) is defined to be the smallest nonvanishing power of z in this
Laurent series representation of f . From this point of view, the valuation ring R is the ring of
meromorphic functions that are holomorphic at p, and I is the set of meromorphic functions that
vanish at p. It turns out that every valuation ν ∈ Val(Σ) is equivalent to νp for some p; this
establishes the aforementioned bijection between Σ and Val(Σ).

3. Consequences

3.1. Connections to Algebraic Geometry. As noted previously, for an arbitrary field extension
F/k, one can generalize our work in Section 2 and construct the Zariski-Riemann space of F/k, which
is a locally ringed space and of independent algebro-geometric interest. One can read further about
this generalization in [3]. However, there is a more immediate connection to algebraic geometry
that we have essentially already seen in the case k = C:

Theorem 3.1. Let k be a field, and let E denote the category of projective, nonsingular algebraic
curves and nonconstant morphisms between them. Then E is equivalent to the category of field
extensions K/k with transcendence degree 1.

Proving Theorem 3.1 as stated requires enough algebraic geometry to justify omitting the
proof. Note that in the case where k = C, Theorem 3.1 implies that E and D (and hence also C) are
equivalent as categories. Alternatively, by recalling some results we proved earlier this semester, we
can sketch a proof of this special case by illustrating an equivalence between C and E . Early on in the
semester, we showed that every nonsingular, complex algebraic curve is a Riemann surface. In fact,
we showed how to associate a Riemann surface to every complex algebraic curve—the normalization
of the curve. Recall that we used this construction in our proof of Theorem 2.1. Later, we used
Riemann-Roch to prove Chow’s theorem:

Theorem 3.2 (Chow’s theorem). A compact, connected, smooth complex-analytic curve C ⊂ CPN

is an algebraic variety. In particular, every compact Riemann surface is biholomorphic to some
complex algebraic curve.

Moreover, it turns out that every holomorphic map between two compact algebraic varieties is
regular (i.e., a morphism of varieties); the canonical reference for this result is [4]. This result, in
conjunction with Theorem 3.2 illustrates the way in which C and E are equivalent as categories.
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3.2. Algebraic Consequences. Recall the following from earlier this semester: given a noncon-
stant holomorphic map of degree d f : X → Y of Riemann surfaces, we have a monodromy
ρ : π1(Y \ ∆) → Sd, where ∆ is a discrete subset of Y . The image of this map is called the
monodromy group of f .

Theorem 3.3. Let f : X → Y be a nonconstant holomorphic map of Riemann surfaces. Then
the Galois group of the corresponding field extension kY ⊂ kX , Gal(kX/kY ), is isomorphic to the
monodromy group of f .

3.3. Connections to Algebraic Number Theory. There is also a beautiful connection between
the theory of Riemann surfaces and that of algebraic number theory. To see this, begin by consider-
ing the rings Z and C[z]. These rings are both Euclidean domains, and Q is analogous to C(z) (both
are fields of fractions of the rings Z and C[z], respectively). Just as we considered finite extensions
of C(z), we consider finite extensions of Q, i.e., algebraic number fields. Denote such an extension
by k. Recall that in the case where K is an algebraic extension of C(z), every valuation on K “lies
over” a valuation νz0 corresponding to a point z0 ∈ C(z). In the case that k = Q, the valuations
correspond precisely to the primes in Z, and thus we see that for a general k, a valuation on k lies
over the valuation corresponding to a prime p. Given any prime p ∈ Z, we can write any rational
number x as pv q

r , where p does not divide either of the integers q or r. This gives us a valuation
νp on Q given by νp(x) = v. Checking that νp is indeed a valuation is straightforward, but it is
a nontrivial fact (which we neglect to prove for the sake of brevity) that any valuation on Q is
equivalent to one of the νp’s. Recall that the valuation νz0 corresponding to z0 ∈ C is constructed
in exactly the same way as νp, with (z − z0) taking the place of the prime p. The following table
(adapted from [2]) illustrates this analogy more succinctly:

Riemann Surfaces Number Fields
K = kCP1 = C(z) K = Q
OX = C[z] OK = Z
p ∈ C pZ
order of vanishing of f(z) at p, f ∈ C(z) power of p dividing n ∈ Q
germs of functions Op = {

∑
anz

n
p } Zp = {

∑
anp

n}
residue field C residue field Fp

finite extension kX/C(z) algebraic extension L/Q

While this analogy is interesting and useful, it is important to also recognize the ways in which the
two situations are not analogous. In particular, we point out that in the case of C(z) there is an
additional valuation “at infinity” corresponding to ∞ ∈ CP1, and there is no such valuation for Q.

4. Conclusion

Section 3 demonstrates the manifold applications of Theorem 1.1 and the tools used to prove
it, especially to algebraic geometry and number theory. What is most apparently beautiful is the
aforementioned equivalence of categories between

(1) compact Riemann surfaces and holomorphic maps between them;

(2) projective, nonsingular complex algebraic curves and nonconstant morphisms between them;

(3) finite field extensions of C(z).

Recall that we can move between these categories in the following ways: Given a Riemann surface,
considering the meromorphic functions on the surface gives us a field. Likewise, given any algebraic
curve, we can consider the field of rational functions on the curve. Starting with a field K, we saw in
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Theorem 2.1 that we can construct a Riemann surface with K as its field of meromorphic functions;
Chow’s theorem then tells us that this Riemann surface is an algebraic curve. Alternatively, we saw
in the proof of Theorem 2.1 that K corresponds to the compactification of some complex algebraic
curve. What is most striking about this equivalence of categories is that it allows us to work
seamlessly in the intersection of algebra, geometry, and analysis! For example, holomorphic maps
between compact Riemann surfaces—analytic objects—are secretly just morphisms of algebraic
curves, and these are secretly just inclusions of fields! Thus, this result allows us to turn analysis
into geometry into algebra and vice versa. Results such as Theorem 3.3 are particularly useful
because they allow us to turn the problem of computing the monodromy group of a holomorphic
map into the problem of computing the Galois group of some field extension, which, in some cases,
is simpler or at the very least more accessible.

To conclude, we present a true proof of Theorem 1.2 (the impetus for this project), i.e., one
that does not rely on Theorem 1.1 (which we did not prove entirely).

Proof of Lüroth’s Theorem. By assumption, K must have transcendence degree 1 over C. Let X
denote the compact Riemann surface from Theorem 2.1 associated to K so that the meromorphic
functions on X are kX ∼= K. The existence of a meromorphic function f : X → CP1 tells us that
there is an extension of fields K ∼= kX/C(z) with [K : C(z)] = deg(f). This forces deg(f) = 1,
implying that it is a biholomorphism from X → CP1, as desired. □
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